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orientation and others in the twin orientation. A gen- 
eral equation covering this situation is obtained by 
multiplying equations (A7) and (AS) giving on sim- 
plification 

06 -Jr- (1 -- 30~3c)Q 3 AI- (1 -- 6~hh¢-- 30~3c) ----- 0 

for e's ,~ 1 (A9) 

where terms with squares and higher powers of the 
fault probabilities as also their cross products have 
been omitted. 
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BY SHRIKANT LELE 

Max-Planck-Institut fiir Metallforsehung, Stuttgart, Germany (BRD) 

(Received 18 April 1974; accepted 9 May 1974) 

The kinematical theory of X-ray diffraction by hhcc crystals with stacking faults is developed. The 
intensity distribution in reciprocal space is derived as a function of seven parameters which represent 
four growth and three deformation fault probabilities. Only reflexions with H - K S  3N, N an integer, 
are affected by faulting and exhibit generally changes in integrated intensity, profile peak shift, broadening 
and asymmetry. It is shown that eleven independent combinations of the seven fault probabilities can 
be evaluated from the measured profile characteristics. 

Introduction 

Extensive work has been performed on the derivation 
of X-ray diffraction effects of faulting in close-packed 
structures with ranges of influence equal to 2 and 3 
(Warren, 1959; Anantharaman, Rama Rao & Lele, 
1972). Three structures with a range of influence equal 
to 4 are possible. Diffraction effects of growth and de- 
formation faults for two of these, namely hcc and hhc 
structures, have been treated in earlier papers (Lele, 
1974a, b) while Gevers (1954) has given a general 
treatment for growth faults in crystals of this type. In 
the present paper we shall consider the third structure, 
namely hhce, containing growth and deformation faults. 

The 12-1ayered hhcc structure can be considered as 
a layer structure produced by the regular stacking of 
close-packed layers in the sequence ABA CBCBA CA CB, 
A where the letters A, B and C denote the three possible 
positions of the close-packed layers and the comma 
marks the completion of the repeat period. The geo- 
metrical structure factors for different H, K, L are given 
in Table 1. The possible growth and deformation 
faults along with a different notation due to Nabarro 
(1967), virtual processes for their formation and 
stacking sequences containing the faults (indicated by 
vertical bar) are given in Table 2. The following cal- 
culations have been made under assumptions usual in 
this type of work (see, e.g., Prasad & Lele, 1971). 

Diffract ion from faulted crystals  

Following Warren (1959), the diffracted intensity is 
given by 

I(h3)= ~ ,2 ~ (exp (iOta)) exp (2rcimh3/12) (1) 
m 

where 
~m = (2n/3) ( H -  K)qm (2) 

qm being a stochastic variate equal to 0, 1 or 2 respec- 
tively according as the m layer is A, B or C when the 
origin layer is A. Cyclic permutation yields the values 
of qm for B and C layers at the origin. Further, 

( e x p  ( i ~ m ) ) = C Q  m (3) 

where 0 is a solution of the so-called characteristic 
equation and C can be obtained from the initial condi- 
tions. The characteristic equation for growth faults has 
been obtained by Gevers (1954, equation 12) while 
that for deformation faults is derived in the Appendix. 
Combining these two equations, we have finally 

0 8 .q_ O~CO 7 .3t- O~hhcO 5 .Jr_ (1 -- ~ -- C~C-- O~hhc-- O~¢h-- 30~4h 

-- 60CZhc)O 4 -- ~ZcO 3 --  O~**cO "q- (1 - 2o~h - 2o~ - 20Chh~ 

-- 2a¢~h-- 30C4h -- 60~2hc-- 30~4c) = 0 for ~'S ,~ 1 (4) 

where c~x is the probability of the occurrence of faults 
of type x (Table 2). For convenience, the relationship 
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to Gevers '  (1954) no ta t ion  is given below 

as -+  (1 - a 0 ;  a~ --+ a4; a~nc -+  (1 - a s ) ;  c t ~  -+  a2. 

Solut ions o f  equa t ion  (4) m a y  be expressed in the 
fol lowing f o r m  

o , = Z ~ e x p ( - 2 r ~ i )  --f~-+X~ v=1,2 ,4 ,5 ,7 ,8 ,10,11 (5) 

where  Z~ and  X,  are real and  are given by 

z~=z~= 1-¼(~.+~) 2+1/3 - ~ (~ +~.~) 

- ~(a~n + 2a2h~ + a4~) 

z~-- z~.= 1-¼(~ +.c~) -~(~ + .~ )  
- a(o~4~ + 2e~h~ + ~4~) 

z~=  Zs= 1 - ¼ ( ~  + ~ h )  --~(~c + C~.~) 
-'~-(e4h + 2a2hc + e4~) 

Z5  = Z7  = 1-¼(o~h + O~cch) -- 2 -- 1/3 8 (O~+O~hhc) 

- 3(a4h + 2a2h~ + a4~) (6) 

)(i = -Xn- 1 16rt { ( ~ -  ann~) + 1/3(0~4~ -t- 20~2~c- ~4c) } 

1/3 
X z =  - ) ( t o =  ~ {(~X¢--~hh¢) + (a,a + 2aza¢-- a4¢)} 

1/3 
x , =  - x ~ =  ~ ((~c- ~ c ) -  (~,h + 2 ~ c - -  a4~)} 

1 
X s =  - ) ( 7 =  - 16---~ { ( a ¢ -  akh¢)-- 1/3(~4h + 2azhc--a4¢)} • 

As ment ioned  earlier the C ) s  can be found  f r o m  the 
initial condit ions.  The lat ter  found  by direct  eva lua t ion  
f rom all possible s tacking sequences of  eight layers,  
are given below 

(exp  ( i ~ o ) ) =  1 

(exp  ( i ~ )  = -½ 
(exp ( i~2))  = 

+ 

(exp  (iq~a)) = 
+ 

(exp ( i~4))  = 

(exp ( i~s ) )  = 

(exp ( i~6))  = 

(exp ( i~7))  = 

¼(1 + ~r~n - ¼~ 

¼0~anc --  ¼C~cct~ + 3t~4h -- 3~4c) 

-~(1 +¼~,-~,~ 
9 _,3_ "~O~hhc -- 40~cch + 3~4h + 6C~2hc -- 9~4c) 

- ½(1 - ¼~h -- 3 3 - -  3 ~ 4 h  - -  60~2hc) ~O~hh c - -  4 (Xcch 

~( 5 - ~ - ~  + ~ c - - ~ . h c  
-z--a~ch27 _ 12~4k - 24~2h~ -- 3Cq~) (7) 

9 3 
- ½ ( 1 - ¼ ~ ,  -- -~O~h -- ~2a,h -- "~a2hc -- ~a4c ) 

~( 5 --y-~,,  - - ~ c  + ~ ~ ,, ~ °"  " ~ - ~ h h c  - -  " - ~ ' ~ c c h  

9a4~,- 18a2hc-- 1 8 a ~ ) .  

Subst i tut ing f rom equat ions  (5), (6) and  (7) in equa t ion  
(3) and  solving the resul tant  set of  eight s imul taneous  
equat ions  for  the C~'s, we have 

Ct = C d  = 0.0251 { 1 + 1.3274(~, - acc~,) + 1 "058(X4h 

- 1 '616~2hc-- 0"558a4c -- i[0"9330(ah + ~cch) 

-- 1"83250~4h + 2"799~2hc-- 0"9665CX4c] } 

C2 = C~  = 0.0938{ 1 - 0"25(~a-  ~c~,) - 0"62574t, 

- 0.25~2,,- 0'875~4c + i[0" 1443(C~h + acch) 

+ 1 '0825~4h + 0"433~2h~-- 1" 5155~4,] } 

L 12M 

H - K  

3N 12f 
3N_+l 0 

Table  1. S t r u c t u r e  f a c t o r s  f o r  h h c c  c r y s t a l s  

F = 0  for H - K + L ~ 3 N  

IFl 
12M_+ 1 12M_2 12M_+3 12M_+4 

o o o o 

(3l/6/2) (1/3 -- 1)f 31/3f 0 3f 

12M+5 12M+6 

0 0 

(3l/6/2) (1/3 -t- 1)f 0 

Fault 

Growth 

Deformation 

Notation 

hhc 

C 

h 

cch 

4h 

2hc 

4c 

Table  2. S t a c k i n g  f a u l t s  in h h c c  c r y s t a l s  

Process of formation Stacking sequence 

Removal of l layer + glide h h c c h h c h h c c h h c 
A C B A B A C I A  C B A B A  C 

Insertion o f l  layer+glide h c c h h c c c h h c c h h 
C B A B A  C B I A B A  C B C B  

Twin c h h c c h h h c c h h c c 
C A  C B A B A I B C A  C A B C  

Twin c c h h c c h c c h h c c h 
B A B A  C B C I A B A B C A C  

Glide c h h c c h h h h h h c c h 
C A  C B A B A I B A B A C B C  

Glide h h c c h h c h c h c c h h 
A C B A B A C I A B A C B C B  

Glide h c c h h c c c c c c h h c 
C B A B A C B I A C B A B A C  
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Ca = C~ = 0"0313{1 - 2 '25(~-  ~ch) - 1" 125~4h 
+ 0" 75~2ct~ -- 0"375~4c -- i[1 "8764(~h + ~h)  (8) 
+ 1"9486~4h-- 1"299~2h~--0"6495~4~]} 

C5 = C ~ = 0" 3499 { 1 + 0" 1727(c~h - ~ )  + 0" 192~4h 
+ 0" 116c~2h~ + 0 " 3 0 8 ~ 4 c  - -  i[0'067(~h + ~ )  
+ 0"3325~z4h + 0"201 ~2t~c -- 0"5335"~d} 

where the * denotes complex conjugation. Substituting 
from equations (3) and (5) in (1), we have on simplifica- 
tion 

I(ha)=g z [C,~ ~m Z~m' cos 2rim (1-~-~-i~-X,) 

- -Oi l  ~m ZIlml sin inlml (h;_ _~_~_XO ] 

+~2[~2~ ~,~., oos~m ( ~ - ~ - <  

-~4, ~m ~':' s~n ~,m, (~-~--~4)] 

-}-1//2[C5r~malsml COS 2rim( h312 ~ bX5) 

+ C5, m~ Z~"' sin 2nlml (1-~ --~+ Xs)] 

+~'~ [~4~ :~ z"" ~°s~m ( ~ m  ,2 ~--,-x4) 

-JrC4l ~m ZI4ml sin 2him[  (h312 82 {-X4)]  

+~2 [~2~ ~ ~o, oos~m (~. l~ ~2~° ~2) 

"-~ C2t ~ Z Iml sin 2nlml  - ~  12 
m 

+~ [~, ~m ~m cos~m (1~ ~+~0 

m 12 1½ t- Xt (9) 

where C~ and C~ are the real and imaginary parts of 
C, and are given by 

(1) 
C~r=(½)(C~+C*~); C~,= ~tt (C~-C*) v=1,2,4,5. 

0o) 
Performing the summations in equation (9), we have 

I(h~) 

: 1~/2Clr - -  

1-Z2-2(Cu/C,~)Z, sin 2n (ha 1 X,) 
.12 la 

+ v2C2, 

.dr_ ~lf 2 C 4r 

l +Z2-2Zl  cos 2n (~2 -1-~-X 0 

1--g2--2(C2l/C2r)a2 sin 2n (h312 122 X2) 

~+~-~2cos~ ( ~ - ~ - ~  0 

..~ ucl 2 f sr - -  

h3 , X.4) l + Z  2-2Z4cos2n ~ ~2 

1-zI-2(Cs,ICs,)Zssin2n(~ -~-x~) 

21- l~'2CSr - -  

-~- 1~/2C4r - -  

l + Z~-  2Zs cos 2n (-~2 -~--~z - Xs ) 

1-Z~ + 2(Cs/Csr)Zs sin 2n (-~2 -13-~+ X5 ) 

l + ZZs-2Zs cos 2n (~2 -1-~+ Xs ) 

1-Z~ + 2(C4JC4r)Z4 sin 2~z (-~2 - s  + X4 ) 

-~- ~/2C2r - -  

l + Z2-  2Z4 cos 2n (-lh2 -1-~-~ + Xa) 

(h3 lo +X2) 1-Z2+2(C2dC2,)Z2 sin 2n -~  ~ 

+ vzclr 

h3 1 o + X2) 1 + Z 2 -  2Z2 cos 2n --~ -i-~ 

(h3 1 1  ..1_. X1 ) 1-Z~ + 2(C~,/Clr)Z1 sin 2n -~- -~-~ 

ha 11 + X1) 1 + Z ~ -  2Z1 cos 2n .-~ - ~ -  

(11) 

Description of diffraction effects 
Reflexions with H-K=3N,  L=12M, M and N 
integers, remain sharp. For reflexions with H -  K # 3N, 
the first to eighth terms on the right-hand side of equa- 
tion (11) give rise to broadened peaks corresponding to 
L = 1 2 M + I ,  12M+2, 12M+4, 12M+5, 12M+7, 
12M+8, 12M+ 10, 12M+ 11 respectively. In general, 
all reflexions exhibit changes in integrated intensity, 
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profile peak shift, profile broadening and profile 
asymmetry. These effects can be utilized for estimating 
fault probabilities. Quantitative expressions for these 
profile characteristics are given below. 

Profile integrated intensity 
The integrated intensities 7"1, T2, T4 and T5 in recip- 

rocal space for reflexions with L =  12M+ 1, 12M+2,  
1 2 M + 4  and 12M+ 5 respectively can be obtained by 
integrating separately the corresponding terms on the 
right-hand side of equation (11) with respect to ha. The 
fractional changes in the ratios R2~, R~ and R~ of the 
integrated intensities (T2, T0, (T a, 7"1) and (T s, 7"1) 
respectively are given by 

AR2~/R'-~ = - 1"5774(~-  a~,) - 1"683a4~, 

+ l'3660~2hc--0"317e4~ (12) 

AR4t/R4t -- - 3"5774(eh- etch) -- 2" 183a4h 
+ 2"366az,~+0"183a4~ (13) 

ARs~/R~t = - 1.1547(c~ h -  c%a) - 0"866e4~, 

+ 1.732~2~ + 0.866cq¢. (14) 

By experimental measurement of the quantities AR2t/ 
R2t, AR4~/R4~ and AR~/Rs~, one obtains three different 
combinations of the fault probabilities. We designate 
such linear combinations by the term compound fault 
parameter. 

Profile peak shift 
Each term on the right-hand side of equation (11) 

gives rise to a peak when the argument of the cosine 
term in the denominator is a multiple of 2re. Thus the 
changes in the profile peak positions due to faulting can 
be found and after conversion to 20 ° coordinates are 
given by 

270 ILl dz 
A(20~)~= -T- z~ z c----r-, tan 0{(,~-c~,~) 

+ l/3(~4h+20~2hc--~4c)} for L =  12M+ 1 (15) 

a(20.)~ = + 
270 ILld z 

- - .  tan 0{1/3(c~- C~,h~ ) 7~ 2 C 2 

-t- 1/3(~4~-t-2~2t~c--~4c)} for L = 1 2 M + 2  (16) 

A(20,,,)~ = + 
270 [Lid'- 

- "  tan 0{ l /3(~-a,h~)  ~2 C 2 

--~/3(aah+2a'-~c--C%) } for L = 1 2 M + 4  (17) 

270 ILl dz 
A(20,,)~= g ~ -  • - - 7 - .  tan 0{(ac-c~,~) 

- 1/3(C%+20~2hc--6~4c)} for L =  12M+ 5.  (18) 

Profile peak shift measurements thus lead to estimates 
of four more compound fault parameters. However, 
only two of these are independent. 

Profile integral breadth 
The integral breadth is defined as the ratio of the 

profile integrated intensity and the profile maximum. 
Considering each of the terms in equation (11) sep- 
arately and converting to 20 ° coordinates we have 

270 ILld 2 
(fls)~ . . . .  n -  " c - - - ~ "  tan 0{2(c~ + c~c~,) + (2 + I/3) 

M (OQ "Jr- O~hhc) -[- 3(0~4h -~- 2(~2h c -[- 0~4c ) } 

for L = 1 2 M +  1 (19) 

270 [Lid z 
( f ly)~  . . . .  )~ .......... c2 • t a n  0{2(c~,, + c~c,,) + (c~ + C~hh~) 

+ 3(a4h + 2e'-~ + Cq~)} for L = 12M + 2 (20) 

270 ILld 2 
( f l s )~  = T c - - -y -  - t a n  0 { 2 ( ~  + etch,) + 3 ( ~  + 0C~h~) 

+3(e4,+2~'-h~+C%)} for L =  1 2 M + 4  (21) 

270 [Lid'- 
(fly); = - - ~  c---q- • tan 0{2(c~,,+ c%,,) + ( 2 -  V3) 

x ( ~  + ~,,~c) + 3(~4. + 2~'-h~ + ~4~)} 

for L = 1 2 M + 5 .  (22) 

Four additional compound fault parameters can, there- 
fore, be obtained from measurements of (fle)~, (fly)~, 
(fly)] and (fly)~. Again, however, only two of these 
are independent. 

Profile asymmetry 
A simple measure of profile asymmetry is the shift 

of the centroid of a profile from its peak position. 
Following Cohen & Wagner (1962), we have from 
equation (9) 

360 In 2 
A(20¢_,,)~ = _+ ~z 2 - - -  tan 0{0-933(0ca + ~ccs,) 

- 1.8325c% + 2"799~2cl,- 0"9665~4c} 

for L = 1 2 M +  1 (23) 

360 In 2 
d(20c_m)~= + rc 2 • tan 0{--0"1443(C~h+C%h) 

- -  1 "0825~4h -- 0"433~2~h + 1"5155~4~} 

for L =  12M_+ 2 (24) 

360 In 2 
d(20~_,,)~ = + .... n-2---,  tan 0{ 1-8764(c~,, + c%,,) 

+ l '9486a4h- 1"299C%h- 0"6495C%} 

f o r L = 1 2 M + 4  (25) 

360 In 2 
A(20,_ m)~ = "]- 7g-~'----~ - °  tanO{O.O67(a, + a~h) 

+ 0"3325a4h + 0"201a2~ -- 0"5335a4~} 

for L = 1 2 M + 5 .  (26) 
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Thus, measurement of asymmetry leads to estimates of 
four more compound fault parameters. 

Discussion 

Independent estimates of a total of eleven compound 
fault parameters can be obtained from measurements 
of the profile characteristics mentioned above. Since 
there are only seven fault probabilities, we have an 
overdetermined set of equations and, in principle, all 
seven fault probabilities can be found. In practice, all 
the data required may not be available with sufficient 
accuracy and further the profile broadening may in- 
clude effects due to small domains and lattice strains 
within the specimen. Analysis of the broadening data 
is more complicated for this structure (as also the hee 
structure) since the first two fault-unaffected reflexions, 
namely 00012 and 1120 are superimposed on fault- 
affected reflexions, namely 10]4 and 10]16. A method 
similar in principle to that outlined previously for the 
hoe structure may, however, be utilized for an approx- 
imate analysis (Lele, 1974a). 

The author is grateful to Professor E. Gebhardt for 
working facilities and to the Alexander von Humboldt 
Foundation for the award of a fellowship. 

APPENDIX 
Characteristic equation for deformation faults 

We consider four types of layers to be present in the 
perfect hhcc structure according as they continue the 
stacking in an hh, ch, cc or hc way. We further note that 
4h and 4c faults can occur only after hh and cc layers 
respectively while 2hc faults can occur after he and ch 
layers only (Table 2). The transition probabilities as 
also the phase differences from the (m-1)  to the m 
layer for the above four types of layer are shown in 
Table 3. Let ~bYm represent the phase difference for an m 
layer of the type y from the origin layer, where y rep- 
resents one of hh, ch, cc and he. Then from Table 3 
we have 

(exp (i~hmh)) = {(1-  ~2,,c)09" +C%cCO} (exp (i~h_l)) 
(A1) 

(exp ( i ~ ) )  = {(1 -- ~4c)c0 + ~4cC-0 * } (exp (i~b~n ~_ 1)) 
(A2) 

(exp (iq~7,c)) = {(1 - 72ac)09" +~2~c09} (exp (iq~,%l)) 
(A3) 

(exp ( i ~ ) )  = {(1-  e4,)o9" + e4,co} (exp (i~4L1)) 
(A4) 

where 
o9=exp (2zc//3) ( H -  K)=exp (i~00). (A5) 

Replacing m by (m-1) ,  (m-2 )  and (m-3)  in equa- 
tions (A2), (A3) and (A4) respectively and eliminating 
(exp (i~,h_l)), (exp (i~,%z)) and (exp (i~%a)) among 

the resulting equations and equation (A1), we obtain 

(exp ( i ~ ) )  = {(1-  C%c)O9" + ~2~cO9} 2 
x {(1-  ~,c)o9 + ~4~co*} 
x {(1-  c%)o9* + ~,hC0} {exp (i~b~mh_4) } . 

(A6) 

Let the solution of this recurrence equation be of the 
form 

(exp (i~m~)) = CO m. (A7) 

Substituting from equation (A7) in (A6), we get 

Q4 -- {(1--  (~2hc)(J)* -Jt-O~2hc(.O} 2 { ( 1 -  0C4c)(_O -~- (~4c(_/)* } 

X { ( 1 -  0C4h)(.D* "-I- 0~4h(.D} : 0 • (A8) 

It can be shown that, for crystals in the twin orienta- 
tion, the complex conjugate of the above equation 
holds. Thus 

0 4 - -  { ( 1  - -  O~2hc)(.O -'~ O~2hcO,)* }2 {(1 -- ~4c)(-D* -t- 0~4c(-D} 

× {(1--~4h)60-k-~4h(,O*}-----0. (A9) 

The same relations can be shown to hold for the other 
types of layers. For a crystal simultaneously containing 
h and/or hoe faults (which arise from twinning opera- 
tions, Table 2), some regions of the crystal are in the 
normal orientation and others in the twin orientation. 
An equation applicable in this situation is obtained by 
multiplying equations (A8) and (A9) giving on sim- 
plification 

Q8 + (1 - 3 ~ 4 / ~  - 6 ~ 2 h c ) ~ 0  4 

+(1-3c%-6C%c-3C%)---0 for ct's,~l (A10) 

where terms with squares and higher powers of the 
fault probabilities as well as their cross products have 
been omitted. 

Table 3. Probability trees giving transition probabilities 
and phase differences f rom one layer to the next 

(m- 1) m Phase 
layer Probability layer difference 

hh 1 - O~2h c 
ch C 
A--[ hh 

I O~2hc 
B 

1 - OC4c ch  

3 
- -  O~4c c h  

C 

1 - O~2h c CC 
C 

O~2h c CC 

hc 1 - oc4h 
C 

~ 4 h  h c  
B 

- -  ~Po 

+ ~Po 

+ ~o 

- -  ~ o  

- -  ~ o  

+ ~Oo 

- -  ~ o  

+ ~Oo 
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A mathematical construction is given for arbitrarily many distinct crystal structures all of which would 
give the same diffraction pattern. A. L. Patterson's concept of homometric sets is analyzed, and ex- 
amples are given in one, two and three dimensions. 

Let al, a2,a3 be linearly independent vectors in three- 
dimensional space. Let A be the three-by-three matrix 
whose columns are the aj. The vectors aj determine a 
lattice of points 

An = nlat + n2a2 + n3a3 (1) 

where the nj are integers. The basic cell of the lattice 
is the set of points 

x = ~ a l  + ~za2 + ~3a3 with 0 < #j < 1 . (2) 

The reciprocal lattice has the matrix 

B = ( A r ) - t  =(A-~) r . (3) 

Its columns bj satisfy 

ak. bj = 6k~ = 0 if k Cj 
= 1 if k = j .  (4) 

The reciprocal lattice consists of the points Bh, where 
the hj are integers (called Miller indices). 

Let the atoms in a crystal be located at r t , . . . , r N  in 
the basic cell (2) and at all congruent points rj + An. By 
X-ray analysis, one tries to find the positions rj. 

The F factor is defined to be 

N 

F(h)= ~..f~ exp 2~zi h .  r~. (5) 
s = l  

For h in the reciprocal lattice, observations are made of 
N N 

IV(h)l 2= ~ ~f~f t  exp 2zcih. ( r , - r s ) .  (6) 
s = l  t = l  

* This work was supported by A.E.C. Contract AT(04-3)- 
767, Project Agreement No. 12. 

The f~ are positive numbers. 
If the F factors were observed, the rs would be 

determined uniquely. Ambiguity results from observing 
IF2I instead of F. 

In the following definitions, let X,Y, . . .  represent 
finite non-empty point sets in the real Euclidian space 
of n dimensions. A set X is allowed to have repeated 
elements, but no ordering or indexing is prescribed. 
For instance, if X= {1,1,2} in one dimension, then 

X={1,2,1} but X¢{1 ,2} .  

Given X and Y, we define the sets 

X + Y = { x + y }  (x in X, y in Y) 
2X= {2x} (x in X) 

- X = { - x }  (x in X) 
X + c =  {x +c} (x in X) 
X - Y = X + ( - Y ) = { x - y }  
D(X)=X-X. 

(7) 

Thus, if X has m members, D(×) has m 2 members, in- 
eluding at least m points 0. 

Suppose 

X= {xl . . . .  ,xm} and Y= {y~,...,Ym} • (8) 

We say 

X = Y  if 

xl = Y jl, • • •, Xm = Yjm 

where J l , . . . , Jm is some permutation of 1 , . . . , m .  
Let x and y be points in real n-dimensional space. 


