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orientation and others in the twin orientation. A gen-
eral equation covering this situation is obtained by
multiplying equations (A7) and (A8) giving on sim-
plification

0%+ (1—=303,)@> + (1 — 60ty — 30t3.) =0

for a’s €1 (A9)

where terms with squares and higher powers of the
fault probabilities as also their cross products have
been omitted.
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X-ray Diffraction from Close-Packed Structures with Stacking Faults. IIL. hhcc Crystals
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(Received 18 April 1974; accepted 9 May 1974)

The kinematical theory of X-ray diffraction by hhcc crystals with stacking faults is developed. The
intensity distribution in reciprocal space is derived as a function of seven parameters which represent
four growth and three deformation fault probabilities. Only reflexions with H— K+# 3N, N an integer,
are affected by faulting and exhibit generally changes in integrated intensity, profile peak shift, broadening
and asymmetry. It is shown that eleven independent combinations of the seven fault probabilities can
be evaluated from the measured profile characteristics.

Introduction

Extensive work has been performed on the derivation
of X-ray diffraction effects of faulting in close-packed
structures with ranges of influence equal to 2 and 3
(Warren, 1959; Anantharaman, Rama Rao & Lele,
1972). Three structures with a range of influence equal
to 4 are possible. Diffraction effects of growth and de-
formation faults for two of these, namely hcc and hhc
structures, have been treated in earlier papers (Lele,
1974a,b) while Gevers (1954) has given a general
treatment for growth faults in crystals of this type. In
the present paper we shall consider the third structure,
namely hhcc, containing growth and deformation faults.
The 12-layered hhcc structure can be considered as
a layer structure produced by the regular stacking of
close-packed layers in the sequence ABACBCBACACB,
A where the letters 4, B and C denote the three possible
positions of the close-packed layers and the comma
marks the completion of the repeat period. The geo-
metrical structure factors for different H, K, L are given
in Table 1. The possible growth and deformation
faults along with a different notation due to Nabarro
(1967), virtual processes for their formation and
stacking sequences containing the faults (indicated by
vertical bar) are given in Table 2. The following cal-
culations have been made under assumptions usual in
this type of work (see, e.g., Prasad & Lele, 1971).

Diffraction from faulted crystals

Following Warren (1959), the diffracted intensity is
given by

I(h)=y?* >, {exp (i®,)) exp Qnimhy/12) (1)

where
D =(27/3) (H— K)Gm 2

g, being a stochastic variate equal to 0, 1 or 2 respec-
tively according as the m layer is 4, B or C when the
origin layer is 4. Cyclic permutation yields the values
of g,, for B and C layers at the origin. Further,

{exp (iPn))=Co" ©)
where ¢ is a solution of the so-called characteristic
equation and C can be obtained from the initial condi-
tions. The characteristic equation for growth faults has
been obtained by Gevers (1954, equation 12) while

that for deformation faults is derived in the Appendix.
Combining these two equations, we have finally

Q%+ 00" + typc@® + (1 — oty — 0o — U — e — 30y
— 6031,)0* — % 0° — 0ty c0 + (1 — 206 — 200, — 20ty
- 20tcch - 3“4;, i 60(2,,c - 3“40) = 0 fOI‘ O(’S < 1 (4)

where «, is the probability of the occurrence of faults
of type x (Table 2). For convenience, the relationship
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to Gevers’ (1954) notation is given below
ap = (1—ay); oe—>ag; e = (1 —03)5 Ceen —> %z

Solutions of equation (4) may be expressed in the
following form

0,=Z, exp (—2xi) (1—"2 +Xv) y=1,2,4,5,7,8,10,11 (5)

where Z, and X, are real and are given by

2+ V3
Zi=Zu= 1~ Ko te) ~ ) (ot )
— 3(otn + 200540+ tlac)
Zy=2Z19=1—3(0tp + 0tccn) — §(oc + Upnc)
— (ot + 2000+ 0ly.)
Zy=2Zg=1—5(0t+ tccn) — 3(ctc + thnc)
—3(0tan+ 20000 + otac)
2—-V3
Zs=2Z7=1—3(0t+0ccn) — TV (0tc + Gtpne)

(6)

1
Xi=—-Xu=- 167 {(0re — i) + 1/ 3(tan + 2002 — tac) }

—3(0lan + 2002pc + 0t4c)

3
Xy=—Xp= 1%5 {(0tc — athme) + (Oan + 20055, — ) }

V3
167

Xo= 8= {(‘Xc — pne) — (Olap + 20040 — O‘Ac)}

1
Xs=—X;=~— = {(“c—“hhc)_ V3(“4h+2“2nc—054c)} .

CLOSE-PACKED STRUCTURES WITH STACKING FAULTS. III

As mentioned earlier the C,’s can be found from the
initial conditions. The latter found by direct evaluation
from all possible stacking sequences of eight layers,
are given below

Cexp (iPg))=1
Cexp (iP)=—}%
Cexp (i®2)) =4(1+Fou,— 3ot
+ F0thne — F0tecn+ 30an — 3ta)
exp (iP3))= —§(1 + 30, — F2tc
+ F0hne — 30ccn + 30as + 6055 — Ylac)
(exp (i®y)) = —3(1 — Fot — 30nc — F0cen — 30an— 602pc)
exp (iD5)) = (5 — Zray, + 2o — oy,
=20t on— 12004 — 2405 — 30t4c) (M
(exp (iDg)) = — (1 — Fot — F0ccn— 30un — F%anc — 3%c)
Cexp (iP;)) =4(5 — 3o, — 2t otc +Z e — 22 ccn
— 90, — 18054 — 180t4,) -

Substituting from equations (5), (6) and (7) in equation
(3) and solving the resultant set of eight simultaneous
equations for the C,’s, we have

Cy=Cri=0:0251{1 + 1-3274(0t, — 0toer) + 1-058a,
— 1616003 — 0-5580t4. — i[0-9330(cty, + 0t ccr)
—1-832504;, + 2:7990t3;,. — 0-966 50,1}

C,=Cy5=0-0938{1 —0-25(ct — 0to1,) — 062501,

— 02502, — 087 50t4c +1[0-1443 (ot + 0tecn)
+1-08250t;, + 0-43305),.— 15155041}

Table 1. Structure factors for hhec crystals

F=0 for H— K+ L#3N
|F|
L 12M 12M +1 12M+2 12M+3 12M+4 12M+5 12M+6
H—-K
3N 12f 0 0 0 0 0 0
3INt1 0 @AV6/2) (Y3-Df 3Y3f 0 3f @Y6/2) Y3+ 1 f 0
Table 2. Stacking faults in hhce crystals
Fault Notation Process of formation Stacking sequence
Growth hhe Removal of 1 layer+ glide hhcechhc hhcchhe
ACBABAC|ACBABAC
¢ Insertion of 1 layer + glide hcc hhcc chhcchhh
CBABACB|ABACBCRB
h Twin ch hecchh hcchhecec
CACBABA|BCACABC
cch Twin cchhcch ¢cchhcch
BABACBC{ABABCAC
Deformation 4h Glide ch hcchh hhhhccech
CACBABA|BABACBC
2he Glide hhcchhec hchcchh
ACBABAC|ABACBCRB
4c Glide hecc hhcc c¢cccchhe
CBABACB|ACBABAC
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Co=C 2 =0-0313{1 — 2:25(cty — ttoe) — 1112504y
407505 — 0-3750t4, — I[1-8764(cty + tlec) (8)
+ 19486014, — 1299015, — 0-649501,.]}

Cs=C*%=0-3499{1 +0-1727(cty — Accn) + 0192014,
+0-1160t,, + 0-3080t4, — i[0-067 (0t + 0t )
+0-332504;, +0-201 0ty — 0-53350t4,] }

where the * denotes complex conjugation. Substituting
from equations (3) and (5) in (1), we have on simplifica-
tion

h
I(hy)=y? [Clr > Zim cos 2nm (1—; ——

2l

hy
+y? [Cz, > Z§™ cos 2nm ( > T%—Xz)

wox)]

)

. h
~Cy S Zi™ sin 2zim| (T% L
m

. h
—Cy 2, ZY™ sin 2z|m| (1—3
m

h
V/Z [C4r Z Z‘I‘ml cos 2nm (T; —iz —X4)
Iml o} hs
—Cy D, ZI™ sin 27m| (—15 - X,
2 {m| hs s
w2 |Cs > Zi™ cos 2am 5 T X

hs
—Cs; > Z™ sin 2z|m| (12 = —XS)]

m

hy
[Cs, > ZIm cos 2am ( 5 17—2+X5)

hy
+Cs, S ZI™ sin 2zim| (12 —112—+X5)]

m

hy
[C4, > Zim cos 2nm ( B 18—2+X4)

+Cq > Z™ sin 2nlm| (1—; —%-{-X,,)]

2 Im| h 10

w2 | Cy > ZI™ cos 2nm o —BtX
lm] o} hs 10

+Cyy z Z'™ sin 2z|m| (ﬁ —1—2-+X2)

2 tml hs 11
+l// Clrz Zl COS27rm —Tf—ﬁ'{"Xl)
+Cu 3z sin 2zl (— ———+X1)] )

where C,, and C,; are the real and imaginary parts of
C, and are given by

695

1
Cr=@3) (C,+C3); Cu= (E) (C,—C?) v=124,5.
(10)
Performing the summations in equation (9), we have

I(h3) "
1= Z2—2(C,,/Cu)Z; sin 27:(12 & —Xl)

=W2C1r h N
1+2Z2-2Z, cos 2z (12 - X))

hy
1—=Z3—-2(Cy/Cy)Z, sin 21 ( 12 12—2—X2)

+V/2C2r h
14+2Z3—27, cos 2n ( o~ —Xz)

—;*—2~X4)

—| 5=
5|3

1= Z2—2(Cy/Ca)Za sin 21 (

+ V/z C4r

h
142227, cos 27 (J —i—X4)

12 12

1_Z§_2(C5i/CSP)ZS Sin 2n (“?‘32‘ —%—Xs)

+ WZCSr h
142227, cos 27 (12 5 —X5)
2 . hs
1—zs+2(cs,./cs,)25 sin 27 (TE ——+X5)
FYiC,—— . K
14+ Z2—2Z; cos 21 (12 17—2+X5)

hy
1—=Z5+2(C4i/Car)Zy sin 2n ( 12 1—82‘+X4)

+ W2C4r

14+2Z%2-2Z,cos 2n (—g— —1%+X4)

h
1-2Z% +2(C2;/C2r)Zz sin 27 ( 3 -}—Q.{_Xz)

2 ¥
+ 1 C2r h
1 +2Z%—2Z, cos 2n (1—; _104 X,
1= Z242(Cy/C)Z; sin 21 (—1}% }—1+X1)
+ chlr h
1+22-27, cosZn(la —L+X

(11)

Description of diffraction effects

Reflexions with H—K=3N, L=12M, M and N
integers, remain sharp. For reflexions with H— K #3N,
the first to eighth terms on the right-hand side of equa-
tion (11) give rise to broadened peaks corresponding to
L=12M+1, 12M+2, 12M+4, 12M+5, 12M+7,
12M +8, 12M +10, 12M + 11 respectively. In general,
all reflexions exhibit changes in integrated intensity,
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profile peak shift, profile broadening and profile
asymmetry. These effects can be utilized for estimating
fault probabilities. Quantitative expressions for these
profile characteristics are given below.

Profile integrated intensity

The integrated intensities Ty, T,, T, and T in recip-
rocal space for reflexions with L=12M+1, 12M +2,
12M +4 and 12M + 5 respectively can be obtained by
integrating separately the corresponding terms on the
right-hand side of equation (11) with respect to 4;. The
fractional changes in the ratios R,;, R,; and Rs; of the
integrated intensities (7,, T), (T4, T;) and (Ts, Ty)
respectively are given by

ARZI/RZI =-1 '5774(0(,, - “L‘L‘h) - 1'683064,,

136603, — 03170, (12)
AR41/R41 = — 3‘5774(“}, e (chh) —2-1 83“4;,

+2-36605,. +0-183ats,  (13)
ARsl/Rsl = — 1' 1 547(“}. - Otcch) - 0'866“4}.

+ 1'7320(2,,c+0’866054c . (14)

By experimental measurement of the quantities 4R,/
R,,, AR/ Ry and ARs,/Rs,, one obtains three different
combinations of the fault probabilities. We designate
such linear combinations by the term compound fault
parameter.

Profile peak shift

Each term on the right-hand side of equation (11)
gives rise to a peak when the argument of the cosine
term in the denominator is a multiple of 2z. Thus the
changes in the profile peak positions due to faulting can
be found and after conversion to 26° coordinates are
given by

. _— 270 |L|d?
4(20,)1=F — l 6!2 - tan 9{(“c—“hhc)
+ V3(a4h+2a2h6_a4c)} fOI‘ L= 12Mi 1 (15)
7 2
4@0m5=+ 25 L tan 01300~ o

+ V3 (etan+ 200p0—0g)} for L=12M +2 (16)

270

L 2
a@op=+ 25 - L

6{ V3((xc ahhc)
— V3(otap+ 2000 — t4e)} for L=12M +4 (17)

270 |L|d?
-5 | clz * tan 6{(ctc — tync)

_ V3((x4h+2a2hc‘a4c)} fOr L= 12M'_{' 5 B

A420,)5=F

(18)

Profile peak shift measurements thus lead to estimates
of four more compound fault parameters. However,
only two of these are independent.

CLOSE-PACKED STRUCTURES WITH STACKING FAULTS. III

Profile integral breadth

The integral breadth is defined as the ratio of the
profile integrated intensity and the profile maximum.
Considering each of the terms in equation (11) sep-
arately and converting to 20° coordinates we have

270 |L|d?
b= "7 B tan 02, b + 24 13)
X (‘xc + tlpne) + 30t + 2000 + 0a) }
for L=12M+1 (19)
270 Lld?
b= "1 P an 0020+ 0) + (et 2
+ 3(oc4,, + 20+ 0a)} for L=12M+2 (20)
270 L|d?
(8= L.
+ 3(oc4,, + 204+ 04r)} for L=12M+4 (21)
., 270 |Lid* ,
b= "2 o)+ (2~ 113)
% (ot + O‘nhc) + 3(0541. + 200540 + A4c)}

for L=12M+5. (22)
Four additional compound fault parameters can, there-
fore, be obtained from measurements of (£,);, (B,)5,
(By)s and (B,)5. Again, however, only two of these
are independent.

Profile asymmetry

A simple measure of profile asymmetry is the shift
of the centroid of a profile from its peak position.
Following Cohen & Wagner (1962), we have from
equation (9)

360In2
2

A(20.-m)i= * an 6{0-933(cty + ateen)

-1 '8325a4h + 2'799“2651 — 0‘9665“46}

for L=12M+1 (23)
H25Nim 360nln2 o)
— 10825614, — 0-4330505 + 1-515504,}
for L=12M+2 (24)
4020, ,)5= + 7376%193 tan 0{1-8764(ct, + treer)

+ 1'9486“4}1 - 1 '2990(25,, - 0'6495“4(_-}
for L=12M+4 (25)

3601n 2

A=+ " tan0{0-067(cy + tecr)

+0-332504, + 0-20T otz — 0-53350t4,}

for L=12M+5. (26)
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Thus, measurement of asymmetry leads to estimates of
four more compound fault parameters.

Discussion

Independent estimates of a total of eleven compound
fault parameters can be obtained from measurements
of the profile characteristics mentioned above. Since
there are only seven fault probabilities, we have an
overdetermined set of equations and, in principle, all
seven fault probabilities can be found. In practice, all
the data required may not be available with sufficient
accuracy and further the profile broadening may in-
clude effects due to small domains and lattice strains
within the specimen. Analysis of the broadening data
is more complicated for this structure (as also the Acc
structure) since the first two fault-unaffected reflexions,
namely 00012 and 1120 are superimposed on fault-
affected reflexions, namely 1014 and 10716. A method
similar in principle to that outlined previously for the
hec structure may, however, be utilized for an approx-
imate analysis (Lele, 1974a).

The author is grateful to Professor E. Gebhardt for
working facilities and to the Alexander von Humboldt
Foundation for the award of a fellowship.

APPENDIX
Characteristic equation for deformation faults

We consider four types of layers to be present in the
perfect hhce structure according as they continue the
stacking in an hh, ch, cc or hc way. We further note that
4h and 4c faults can occur only after 44 and cc layers
respectively while 2A4¢ faults can occur after 4c and ch
layers only (Table 2). The transition probabilities as
also the phase differences from the (m—1) to the m
layer for the above four types of layer are shown in
Table 3. Let &2, represent the phase difference for an m
layer of the type y from the origin layer, where y rep-
resents one of hh, ch, cc and hc. Then from Table 3
we have

{exp (iDM)) = {(1 — ozp)* + oz} {eXp (IPir— 1))

(41
(exp (IQ;?)) = {(l - 0(4‘.)(0 + (X4,_-CU*} <exp (l¢fnc— 1)>
(42)
(exp (iPg)) = {(1 — tznc)0* + oo} {eXp (IDf_ 1))
(43)
(exp (iDh)) ={(1 —ag)* +agyw} {exp (iDF_1))
(44)
where
w=exp (2ri/3) (H— K)=exp (ip,) . (45)

Replacing m by (m—1), (m—2) and (m—3) in equa-
tions (A42), (43) and (44) respectively and eliminating
{exp (iP5r_,)), {exp (iP5 ,)) and {exp (iP};-;)) among
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the resulting equations and equation (41), we obtain

exp (D)) = {(1 — dopc) 0™ + a0}
x {(1 —ag)w + ot 0* }
x {(1 — o)™ + g} {exp (IPH_,)) .
(A46)

Let the solution of this recurrence equation be of the
form
Cexp (iPp))=Ce™.

Substituting from equation (47) in (46), we get

(47)

o*— {(1 — o)™ + CJC2i|c00}2 {(1 — )+ 0‘4c0)*}

x {(1 —oy)* +ayw}=0. (A8)
It can be shown that, for crystals in the twin orienta-
tion, the complex conjugate of the above equation
holds. Thus

0* — {(1 — oz )0 + ot ™ P {(1 — )™ + a0}

X {(1 —a4h)w+d4hw*}=0 . (A9)
The same relations can be shown to hold for the other
types of layers. For a crystal simultaneously containing
h and/or hcc faults (which arise from twinning opera-
tions, Table 2), some regions of the crystal are in the
normal orientation and others in the twin orientation.
An equation applicable in this situation is obtained by
multiplying equations (48) and (49) giving on sim-
plification

0%+ (1 =30y — 60t340)0*

+ (1 =301y, — 6013 — 304.) =0 for a’s<l (A410)

where terms with squares and higher powers of the
fault probabilities as well as their cross products have
been omitted.

Table 3. Probability trees giving transition probabilities
and phase differences from one layer to the next

(m—1) m Phase
layer  Probability layer difference
ch 1= tane hg‘ — 9o

e M
cz 1=% clh? + @0

‘ e cé':, — %o
hj 1 —dzne "é o0
hZ 1—ot4p th — 0
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Ambiguities in the X-ray Analysis of Crystal Structures®

By JOEL N. FRANKLIN
Applied Mathematics Department, California Institute of Technology, Pasadena, California 91109, U.S.A4.
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A mathematical construction is given for arbitrarily many distinct crystal structures all of which would
give the same diffraction pattern. A. L. Patterson’s concept of homometric sets is analyzed, and ex-

amples are given in one, two and three dimensions.

Let a,,a,,a; be linearly independent vectors in three-
dimensional space. Let A be the three-by-three matrix
whose columns are the a;. The vectors a; determine a
lattice of points

(1)

where the n; are integers. The basic cell of the lattice
is the set of points

An=n,a, +n,a,+n;a,

x=(a,+&a+Ea; with 0<E; <1 2)
The reciprocal lattice has the matrix
B=(AT)"!=(A"HT. 3
Its columns b; satisfy
a,.b;=0,;=0if k#j
=1ifk=j. 4)

The reciprocal lattice consists of the points Bh, where
the h; are integers (called Miller indices).

Let the atoms in a crystal be located at ry, . ..,ry in
the basic cell (2) and at all congruent points r;+ An. By
X-ray analysis, one tries to find the positions r;.

The F factor is defined to be

Fh)= %j} exp2nih.r,. (5)
s=1

For hin the reciprocal lattice, observations are made of

N N
|F)2= > > fifiexp2nih. (t—1).  (6)

s=1 ¢=1

* This work was supported by A.E.C. Contract AT(04-3)-
767, Project Agreement No. 12,

The f; are positive numbers.

If the F factors were observed, the r, would be
determined uniquely. Ambiguity results from observing
|F¥| instead of F.

In the following definitions, let X,Y,... represent
finite non-empty point sets in the real Euclidian space
of n dimensions. A set X is allowed to have repeated
elements, but no ordering or indexing is prescribed.
For instance, if X={1,1,2} in one dimension, then

X={1,2,1} but X#{1,2}.

Given X and Y, we define the sets

X+Y={x+y}(xinX,yinY)
AX={Ax} (x in X)
—X={-x} (x in X)
X+e={x+c} (xin X)
X=Y=X+(-Y)={x—y}
DX)=X-X.

(M

Thus, if X has m members, D(X) has m?* members, in-
cluding at least m points 0.

Suppose

X={X1, .., Xpm} and Y={yy, .., ¥m} - ®
We say

X=Yif

Xi=Yjtr++>Xm=Yjim

where jj, . . .,j. is some permutation of 1,...,m.
Let x and y be points in real n-dimensional space.



